Simultaneous Planning:
A Real-Time Planning Method

Ramon F. Brena, Emmanuel Martinez

Center for Intelligent Systems
Monterrey Institute of Technology
ramon.brena@itesm.mx, AO05882940itesm.mx

Abstract. We present a novel real-time planning method as we have
applied it to the Robocup competition. The basic idea in this method is
to simultaneously keep in consideration more than one plan by evaluat-
ing and maximizing an expected utility and feasibility of the current and
the future possible actions. This could be better than maximizing the ex-
pected utility of just one plan or the current possible actions, because in
a highly dynamic environment like Robocup, plans get frequently stuck
due to unexpected events, like an unforseen blocking, etc. In these cases,
a “second-best” plan could rescue the situation. We propose a specific ar-
chitecture for implementing this method in the context of a player agent
in .he Robocup competition. In this paper, after motivating and pre-
senting the method, we propose a specific architecture for implementing
this method in the context of a player agent in the Robocup competition
and show how we have applied it to the “Borregos” Robocup team, that
participated at the Robocup 2004 tournament at Lisbon. Some prelimi-
nary figures about performance and experimental evidence showing the
potential of our method are presented as well.

1 Introduction

Real-time soccer is a complex game, involving a great deal of coordination be-
tween team members, and the development of strategies leading to marking as
many goals as possible and receiving as few goals as possible.

Robocup simulated soccer represents that complexity to a certain degree,
meaning that many interesting soccer complexities are present in the simulated
soccer as provided by the soccerserver system [3], like limited vision and hearing,
noise, etc.

In simulated Robocup each player is a decision-maker under uncertainty,
because its vision is limited to a “cone”, so the part of the field not seen is
basically unknown, and players try to overcome this limitation by using their
memory, extrapolating the previous situation, using communication to exploit
information available to their partners, etc., but a great amount of uncertainty
remains anyway.

Thus, simulated soccer is a challenging problem from the standpoint of co-
ordination, communication, uncertainty handling, learning, planning, and so on

(8].

© A. Gelbukh, H. Calvo (Eds.)
Avances en la ciencia de la computacion en México
Rescarch on Computing Science 13, 2005, pp. 3-11

4 R. Brena, E. Martinez

Many Robocup teams have applied techniques issued from the Artificial In-
telligence (AI) field [14] to develop sophisticated skills. Among those Al-related
techniques we find Neural Nets, Reinforcement Learning and Probabilistic Rea-
soning for low-level skills [15], and decision trees (16], Reinforcement Learning
[17] and Multiagent Coordination methods like Coordination Graphs [11], for
high-level skills.

One area that perhaps has not reached a high degree of development in
Robocup is planning [1]. Due to the very dynamic nature of simulated soccer,
long-term planning is pointless, as almost any long plan will fail when facing un-
expected conditions. Thus, most teams are highly reactive and rely more an very
polished low-level skills like ball interception and shooting than on clever playing
ideas. Very few teams have applied a planning method to Robocup; in [13], a
planning method using opponent modelling is applied for the Coach league team
from Carnegie Mellon University. Using bayesian networks, the coach models the
opponent's behavior and generates a plan. Finally, the coach communicates the
plan to the players. In (5] players have different plans in their memory and they
search for one plan to arrive to the opponent goal; their plans consist of dribbles
and passes. The cited works use traditional planning methods where the starting
point and the ending point of the plan are defined before its execution starts.

In most planning methods (18], when a plan is interrupted at execution time
due to unexpected events, players have to start over from scratch a new plan

-which will be most probably interrupted as well.

d o

© O 1
° []

[]
N o (o))
(o] o ®
[J
o [] o] pRISSLE
. PARS
O

Fig. 1. Example of the problem of decision making in Robocup

. Let us examine an example. Fig. 1 shows a game situation where the agent
with the ball must take a decision between giving the ball to a well-positioned,
bu‘t lo.nely partner, or filtering a long pass to the right, or even to continue
dribbling, as indicated by the arrows in the figure.

Simultaneous Planning: A Real-Time Planning Method 5

®
°
o Oe
° °
@
. o o
o ol & °
o
- o
o)

Fig. 2. Wasted action

Fig.2 shows that the after taking the decision of passing to the left, the lonely
player gets stuck by enemies. Of course things could go bad as well if another
action, like dribbling, is chosen, but the difference is that if the player continues
dribbling, it still has the other options. The point here is not that dribbling is
better that passing, but that under uncertainty is good to have options for cases
where what seemed to be the best option just fails and has to be dropped. In
our method we stress the importance of having as many options as possible.

The basic idea in our planning method is to take into consideration, when
evaluating a particular possible move, how many and how good options the
action keeps open after executing it. The advantage of doing this, instead of just
selecting the best possible plan or action at a given moment according to some
metric, is that in a highly dynamic environment like Robocup, plans often get
stuck due to unexpected events, so the agent has to replan from scratch. In our
system, for the contrary, when a plan gets stuck, it is more probable that there
is another remaining option—precisely because the planning method has been
fostering good options all the time.

Our planning method belongs to the class of on-line planning [7]. On-line
planning interleave planning and execution whereas in traditional planning a
plan is made and then executed. Agent-centered search [9] is a technique that
implements on-line planning, restricting planning to the part of the domain
where the current state of the agent is found. Agent-centered search decide on
the local search space, search an action, and execute it. This process is repeated
until the goal state is reached.

In the next section we will detail our planning method In Section 3 we will
describe the Robocup application of our method in our “Borregos” team. and
finally in Section 4 we will discuss pros and cons of our planning method. list
some results of the team, and draw some future work lines.

6 R. Brena, E.' Martinez

2 Method Description

d considers a collection of current possible actions and the
next cycle future actions.! The collection of current possible actions (CPA) is
taken from a “playbook”(2]. CPAs are specified at the role level, involving ab-
stract roles like the “passer”, the “receiver”, and so on. But to be evaluated,
specific players are bound to the current possible actions roles present in the
current situation, so CPAs are instantiated to fit the specific players and posi-

Our planning metho

tions.
The playbook have the following plays: Pass, Filtered Pass, Dribble, Outplay

(a very long dribble), Clearball (a kick to certain position), and Shoot to goal.
We developed some classes to manage the actions but at the end, the actions
are parsed to high level actions of the UvA Trilearn code.

Now we describe the basic steps involved in our system’s operation:

— First we construct a two-level play tree, which is a subtree of a search tree,
prunning off some not plausible plays, based on heuristics, like avoiding
passes to players not in the passer neighborhood. In particular we check the
compatibility between the plays in the first and second levels. These future
actions options have to be “compatible” in the sense that the future actions
can be performed after doing a current possible action. 2

— The best evaluated current possible action is chosen from the CPA with its
list of future actions. This seems entirely like conventional planning, but
here the trick is that we evaluate first-level plays not entirely based on the
maximum-value child, but mainly based on the accumulated value of its
children, giving thus higher evaluations to plays followed by many options.
The exact formula for play evaluation is presented below.

— The selected first-level action is refined through an optimization process.
Here several variations of the action are generated, for instance changing
slightly the direction, speed, etc., in order to choose the exact point yielding
a maximum utility with respect to its list of future actions. This is the final

decision for the agent.

Our evaluation of possible plays is based on their ezpected utilities, i.e. the
product of their benefit (in case they are successful) by their probability of
success; this is why we call it combined evaluation:

e(a) = bf(a) *pf(a) (1)

where bf is the evaluation of benefit function (basically a heuristic taking into
account the position of ball and players, see [12]), and pf the feasibility function,

1 3 3 s .
We decided not to consider more than one future cycle, so our planning trecs are

just two levels deep.
2 1~ .
For instance, after a “clear ball” you cannot make a pass, so these moves are not

compatible.

Simultaneous Planning: A Real-Time Planning Method 7

which returns a number between 0 and 1. The feasibility function is supposed to
correspond to the fraction of times a given play could be successful in the given
situation.

The formula used to calculate the combined evaluation E(a) of a first-level
action a is as follows:

E(a) = kie(a) + kz max{e(si(a))} + ks _{e(si(a))} (2)

where s;(a) the i-th successor of action a in the tree, e(a) is the combined
evaluation of current possible action a with respect to its feasibility and utility,
e(si(a)) are the evaluations with respect to the feasibility and utility of the future
actions s;(a) of the current possible action a.

Fig. 3. A simple two-level tree

We illustrate the application of this formula to a simple tree presented in
Figure 3. In conventional maximum-driven tree evaluation, the branch to the
right would be selected, because this one gives a maximum value. But applying
our formula, the evaluations are different. According to our formula the evalua-
tion of node A, is:

E(A;) = e(Ay) + max{e(f11), e(f12), e(f13)} + D_{e(f11), e(f12), e(f13)}
E(A,) = 25 + max{25, 25,25} +)_{25,25,25}
E(A;) = 25 + 25 + 75 = 125

Whereas the evaluation of the node A is:

E(A; = e(Az) + max{e(f21)} + Y {e(f21}

8 R. Brena, E. Martinez

E(A;) = 45 + max{30} + {30}
E(As) = 45 + 30 + 30 = 105

So, applying our method, we select the branch to the left, where the action
A, is chosen to be optimized and performed.

3 Implementation

03 source code [4]. We have

The Borregos team is based in the UvA Trilearn 20
considering some ideas pre-

implemented some specific skills, like goal-shooting,

sented in [10].
In the current prototype, our planning method is applied to the agent with

possession of the ball; teammates just apply reactive heuristics aiming to help
the player with the ball, like to stay far from opponents while attacking, etc. Of
course, in principle the planning method could be applied to every single player,
and most probably we-will do it in future versions (see section 5).

To implement our strategy, we developed data structures for CPAs and in-
stantiated data, then we implemented evaluation functions (both for benefit
heuristic evaluation and for feasibility evaluation), action optimization, and pars-
ing functions.

Our evaluation and feasibility functions make geometrical calculations and
consider variables like traveled distance, opponent goal proximity, opponents
density, teammates proximity, etc., that are reported elsewhere [12]. The feasi-
bility function has been gradually adjusted in such a way that it corresponds to
the average success rate of plays; this could be considered as a form of learning.

Another component links our decision mechanisms to a soccerserver com-
mand through the use of the UvA Trilearn code.

Figure 4 illustrates the way the planning method is implemented. First, ac-
cording to the current situation of the game, the system checks the current
possible actions that can be executed and make the instantiation, listing the
CPA and the future actions of each member of the CPA. Next, current possi-
ble actions and its future actions are evaluated with respect to its feasibility
and utility. After that, the best current possible action is optimized and finally
executed. In the next cycle, when an agent has the ball, the process start again.

4 Experiments

We have been validating our strategy by playing games against our team dis-
abling the use of future plays consideration. With the use of the proxyserver
[6] we generated statistics to compare the performance of the team with the
simultaneous tactics.

As a preliminary series of experiments, we ran several games between our
team with the planning method (“Planning”) and the same team without the
planning method, and running a maximum-value method that chooses the action

Simultaneous Planning: A Real-Time Planning Method 9

Sensing ' Field moddd)

[Playbook | —nstartiation. .

Qogw e Actions
FulueAcﬁag
&
i quze—d Optimization '_Seleded
L_action ;

__action |
Action Execution

Fig. 4. Robocup prototype architecture

with the greater evaluation (“Nemesis”). Accumulated results are presented in
table 1. The statistical parameters are the following:

— Total goals scored (Goal Scored)
— Average territorrial advantage - ball in opposition half (territ)
— Average pass success rate (psucc)

As we can see in the table, the result was a slight, but clear advantage of the
“Planning” team, both in terms of goals scored (26 scored, 22 received) and in
terms of other statistical mesures, like territorial dominance.

Table 1. Statistical parameters

Team Goal Scored territ psucc
Planning 26 50.815 74.583
Nemesis 22 49.183 57.225

As we can see in Table 1, the goals scored by “Planning” team was clearly
greater than the received ones (scored by “Nemesis”). Other parameters show
a very slight advantage in territorial dominance, and also a great advantage
in passing success rate (that is, number of passes that succeeded divided by
the total number of passes). This last parameter can explain the global better
behavior of the “Planning” team with respect to the reference “Nemesis” team.

10 R. Brena, E. Martinez

We consider these as preliminary experiments, and currently we continue to
refine the method implementation, in particular the evaluation functions, that
are so critical to the planning method. More extensive experimentation is of
course needed. But we consider an initial point is made about the possibilities
of our planning method.

5 Conclusions and Future Work

We have presented a novel real-time planning method for highly dynamic do-
mains with uncertainty, where possible actions evaluation is based not on the
maximum in the search tree, but on a metric considering the quantity and quality
of the options left available by the actions being considered.

An implementation of our method in the domain of the Robocup competition
has been presented, which is at the heart of our “Borregos” team. Preliminary
results, in the context of the SoccerServer Simulation league, are presented.

One critical aspect of our method is its high computational cost, because we
need to perform many evaluations and then one optimization —involving even
more evaluations. We relied on heuristics to reduce the search space for making
the complexity manageable.

We have shown that our planning method has had promising results. We still
have to work in the tunning of the evaluation, utility, and feasibility functions
to increase the number of shoots to goal plays and the opportunities to score 2
goal.

Current research is focused on carefully evaluating our method’s performance,
for rigurous comparison agains other planning methods, especially maximum-
value based. Also, in the future, we want to apply machine learning techniques
for parameters learning.

Acknowledgements. This work was supported by the Monterrey Tech’s Re-
search Grant CATO11.

References

1. James Allen, James Hendler, and Austin Tate. Readings in Planning. Represen-
tation and Reasoning Series. Morgan Kaufmann, San Mateo, California, 1990.

2. Michael Bowling, Brett Browning, and Manuela Veloso. Plays as effective multi-
agent plans enabling opponent-adaptive play selection. In Proceedings of Interna-
tional Conference on Automated Planning and Scheduling (ICAPS’04), 2004.

3. Mao Chen, Klaus Dorer, Ehsan Foroughi, Fredrik Heintz, ZhanXiang Huang, Spiros
Kapetanakis, Kostas Kostiadis, Johan Kummeneje, Jan Murray, Itsuki Noda,
Oliver Obst, Patrick Riley, Timo Steffens, Yi Wang, and Xiang Yin. Users manual:
Robocup soccer server (for soccerserver version 7.07 and later).

4. R. de Boer and J. Kok. The incremental development of a synthetic multi-agent
system: The uva trilearn, 2001.

5. Ahmad Farahany, Mostafa Rokooey, Mohammad Salehe, and Meisam Vosough-
pour. Mersad 2004 team description, 2004.

O

11.

12.

13.

14.

15.

16.

17.

18

Simultaneous Planning: A Real-Time Planning Method 11

. Ian Frank, Kumiko Tanaka-Ishii, Katsuto Arai, , and Hitoshi Matsubara. The

statistics proxy server. In Peter Stone, Tucker Balch, and Gerhard Kraetszch-
mar, editors, RoboCup-2000: Robot Soccer World Cup 1V, pages 303-308. Springer
Verlag, Berlin, 2001.

. Lise Getoor, Greger Ottosson, Markus Fromherz, and Bjoern Carlson. Effective re-

dundant constraints for online scheduling. In Proceedings of the 14th National Con-
ference on Artificial Intelligence (AAAI-97), pages 302-307, Providence, Rhode
Island, July 1997. AAAI Press / MIT Press.

. Frans Groen, Matthijs Spaan, and Nikos Vlassis. Robot soccer: Game or science.
. Sven Koenig. Agent-centered search. Al Magazine, 22(4):109-131, 2002.
. J. Kok, R. de Boer, and N. Vlassis. Towards an optimal scoring policy for simulated

soccer agents, 2001.

J. Kok, M. Spaan, and N. Vlassis. Multi-robot decision making using coordination
graphs.

Emmanuel Martinez. A real-time planning method for Robocup (in spanish).
Master’s thesis, Tecnologico de Monterrey, Mexico, 2005.

Patrick Riley and Manuela Veloso. Planning for distributed execution through
use of probabilistic opponent models. In IJCAI-2001 Workshop PRO-2: Planning
under Uncertainty and Incomplete Information, 2001.)
Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003.

Peter Stone. Layered learning in multiagent systems. In AAAI/IAAI, page 819,
1997.

Peter Stone and Manuela Veloso. Using decision tree confidence factors for multi-
agent control. In Katia P. Sycara and Michael Wooldridge, editors, Proceedings
of the 2nd International Conference on Autonomous Agents (Agents’98), pages
86-91, New York, 9-13, 1998. ACM Press.

Peter Stone and Manuela M. Veloso. Multiagent systems: A survey from a machine
learning perspective. Autonomous Robots, 8(3):345-383, 2000.

M. Zweben and M. S. Fox. Intelligent Scheduling. Morgan Kaufmann, 1994.

